
Supplement to “EBSeq: An empirical Bayes hierarchical model

for inference in RNA-seq experiments”

1 Package/annotation versions

Unless noted otherwise, calculations are carried out in R [14], version 2.14.1. The versions for each

package considered in the manuscript are as follows: baySeq: 1.1.0 (default normalization method

(upper quartile normalization) is used); DESeq: 1.8.2 (sharingMode=”maximum”; default normal-

ization method (median normalization) is used); edgeR: 2.6.3 (tag-wise overdispersion estimation

and default normalization method (TMM) are used); BitSeq: 1.2.1 (default normalization method

(total number of reads) is used);bowtie: 0.12.8; TopHat: 2.0.3; Cufflinks: 2.0.1 (default parame-

ters and normalization method (upper quartile normalization) are used); HTSeq: 0.5.3p9; RSEM:

1.1.20; RSeq: 0.0.7. Splines were estimated using the polynomial fitting function in lm. Human

genome annotation hg18 from RefSeq was used in read simulations. To obtain the ROC curves,

genes/isoforms are sorted ascending by adjusted p-value (DESeq, edgeR, Cuffdiff2) or descending

by posterior probability of being DE (EBSeq, baySeq). In BitSeq, to obtain the isoform ranking in

favor of two-sided DE test via the one-sided statistic PPLR, we sorted the isoforms descending by

max(PPLR, 1-PPLR).

2 Two additional data sets used in Figure 2c

2.1 Gould Lab Data

RNA-seq data was obtained from two groups of congenic rats (four samples in each condition)

harboring the susceptible or resistance allele of the mammary carcinoma susceptibility locus (Mcs1a)

([5]). For these experiments, mammary glands are taken from 8 untreated, mammary cancer-free

females per genotype. The tissue is disaggregated using physical shearing in a solution of Tri-

reagent (Ambion). RNA is extracted using a total RNA extraction kit (Ambion). RNA integrity
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is monitored using a 2100 Bioanalyzer (Agilent). Equal RNA (approximately 5 µg) from 2 rats

is pooled to obtain a single sample for one RNA-seq lane. A total of four samples per genotype

(Mcs1a susceptible or resistant) were processed by the University of Wisconsin Biotechnology Gene

Expression Center using the Illumina Genome Analyzer IIx. Reads are post-processed to a length

of 30 basepairs and aligned to the rat Ensemble RGS3.4 transcripts using Bowtie ([9]), allowing for

up to 100 multiple matches and one mismatch with seed length 30. Expression is estimated using

RSEM ([11, 10]).

2.2 Smith Lab Data

Tophat output files were downloaded from GEO GSM792454-61. Eight samples (4 in each of

two conditions) are considered here. In short, RNA was extracted from atrial tissue samples and

prepared using Illumina’s mRNA protocol. The reads are single-end with read length 36-bp. Each

sample was run on one lane of an Illumina Genome Analyzer IIx. Alignment was done using Bowtie

and TopHat (without de novo transcript detection) with the hg19 RefSeq annotation. Isoform

expression was estimated using Cufflinks ([18]).

3 Assessing the Ig effect in multiple data sets

We evaluate differences among Ig groups in multiple single-end and paired-end data sets processed

under different priming protocols, in different labs, using different isoform expression estimation

methods, using different definitions of isoform complexity, and for a wide range of sample sizes

(from four to sixty-nine).

Supplementary Figure 1 shows data from James Thomson’s lab at the Morgridge Institute for

Research at UW-Madison. The data sets are distinct from those shown in the manuscript. For

these experiments, RNA was extracted from human embryonic stem cell line H1 and prepared using

the Illumina TrueSeq, T7LA[17], and the MinAmp (Thomson Lab internal) protocols, respectively.

For each protocol, three samples were considered. Each sample was run on one lane of an Illumina

Genome Analyzer IIx; the reads are single-end with read length 42-bp. Alignment was done using
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Bowtie with the hg18 RefSeq annotation. Isoform expression was estimated using RSEM.

Supplementary Figures 2(a) and 2(e) show data from Michael Gould’s lab at UW-Madison,

detailed in Section 2.1 of this Supplement.

Supplementary Figures 2(b) and 2(f) show data from the Wold lab [12]. RNA was extracted

from mouse brain tissue and two replicates were prepared using the Solexa protocol. For each

replicate, random primers were used. The reads are single-end with read length 25-bp. Alignment

was done using Bowtie and Tophat (without de novo transcript detection) with the UCSC mm9

annotation. Isoform expression was estimated using Cufflinks with multi-read correction.

Supplementary Figures 2(c) and 2(g) show data from the MicroArray Quality Control (MAQC)

experiment [3] that is distinct from what is shown in the manuscript. For these figures, raw read

files (fasta format) were downloaded from GEO GSM475204-09. RNA was extracted from human

brain tissue and 3 replicates were considered. For each replicate, random primers were used. The

reads are paired-end with read length 50-bp. Each sample was run on one lane of an Illumina

Genome Analyzer IIx. Alignment was done using SeqMap [7] with the hg18 RefSeq annotation.

Isoform expression was estimated using RSeq [8].

Supplementary Figures 2(d) and 2(h) show data from Pickrell et al. [13]. RNA was extracted

from Yoruba Hapmap cell lines and 69 samples were prepared using the Illumina Genome Analyzer

II. For each replicate, random primers were used. The reads are single-end with read length 35-bp.

Raw read files (fasta format) were downloaded from http://eqtl.uchicago.edu. Only Yale data are

used and for the subjects assayed twice only the first replicate is used. Alignment was done using

Bowtie with the hg18 annotation. Isoform expression was estimated using RSEM with multi-read

correction.

Supplementary Figure 3 shows results using an alternative method to define isoform complexity.

Instead of Ig as defined in the manuscript, the unmappability score of each isoform is obtained from

RSEM, and the unmappability scores are clustered to group isoforms. Panel (a) shows the results

from K-means clustering with 3 centers; panel (b) shows the results from a Gaussian Mixture Model.

Recall that Figure 1(c) shows spline fits which are similar to the approaches used by DESeq and

edgeR to estimate variance. Supplementary Figures 4(a), 4(b) and 4(c) show the exact estimators
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used in DESeq, and edgeR (both the common-dispersion model and the tag-wise-dispersion model)

derived using the data from the ESC vs. iPSC experiment that is shown in Figure 1.
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Supplementary Figure 1: Panel (a) shows the empirical variance vs. mean for each isoform profiled
in the experiment comparing ESCs with iPSCs (TrueSeq Protocol); details of this experiment
are given earlier in this Supplement. A spline fit to all isoforms is shown in red with splines fit
within the Ig = 1, Ig = 2, and Ig = 3 isoform groups shown in yellow, pink, and green, respectively.
Panels (b) and (c) are similar to (a), but for data processed under the T7LA and MinAmp protocols,
respectively. The estimated variance of isoforms with average expression in 50th and 80th percentiles
of expressions are shown in (d), (e), (f).
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Supplementary Figure 2: Shown are plots similar to Supplementary Figure 1 generated using data
from the Gould lab (panel (a)) processed by RSEM, data from Wold lab (panel (b)) processed by
Cufflinks, , MAQC data from Wong lab (panel(c)) processed by RSeq and data from Pickrell et
al. (panel (d)); details of these experiments are given earlier in this Supplement. The estimated
variance of isoforms with average expression in the 50th to 80th percentiles of expressions are shown
in (e), (f), (g), (h).
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Supplementary Figure 3: Shown are plots similar to Figure 1(c), but with uncertainty groups
obtained by K-means clustering of unmappability scores instead of Ig groups. The unmappability
score of each isoforms as well as the isoform expected counts are obtained from RSEM. Panel (a)
shows the results using K-means clustering with 3 centers. Panel (b) shows the results using a
Gaussian Mixture Model.
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Supplementary Figure 4: Recall that Figure 1(c) shows spline fits which are similar to the ap-
proaches used by DESeq and edgeR to estimate variance. This figure shows the exact estimators
used in DESeq, and edgeR (both the common-dispersion model and the tag-wise-dispersion model)
derived using the data from the ESC vs. iPSC experiment that is shown in Figure 1(c). Specifically,
panel (a) shows the fitted dispersion values provided by DESeq. The dispersion line is calculated
across all isoforms (red) and within Ig group (shown in yellow, pink, and green, respectively).
Panels (b) and (c) show similar plots from edgeR under their common dispersion (panel (b)) and
tag-wise dispersion (panel (c)) models. Panels (d), (e) and (f) consider average expression in [100,
500]. The range was chosen as it approximates the 50th and 80th percentiles of expression across all
isoforms. Shown are box-plots of the variances of these isoforms collectively, and within Ig group.
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4 Simulations

We followed the simulation setup of [16] by defining counts as Negative Binomial with isoform-

specific mean in sample s and condition C given by lsµ
C
gi and variance lsµ

C
gi(1 + lsµ

C
giφgi). For

the isoform study, we simulated 30,802 isoforms, four lanes in each of two conditions. Sample sizes

were taken to match those observed in the case study comparing ESCs with iPSCs; parameter

values were sampled from empirical ones in that study. The percentages of DE isoforms were set

at 2%, 4% and 5% in the Ig = 1, 2 and 3 groups, also to match the case study data. The empirical

values from the isoforms belonging to same genes are sampled together to preserve dependence.

For half of the DE isoforms, µC1
gi = δgiµ

C2
gi with δgi sampled from the 95%-97% quantile of the

empirical isoform fold changes. For the other half, µC2
gi = δgiµ

C1
gi . The gene level simulation is

similar, with 2% of the genes set to be DE. In addition to sampling µ and φ, for the gene-level

simulation we also matched the simulated data to each gene’s Dixon Q-statistic by adjusting one

value when necessary (see the Methods section on Identification of Outliers for the definition of

Dixon’s Q-statistic). The library size factors for both the isoform and gene-level simulations were

randomly simulated from Uniform (0.8, 1.3). One hundred simulated data sets were generated for

each scenario considered. Supplementary Figure 5 demonstrates that characteristics observed in

the case study data are reproduced in the simulated data sets.
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Table 2 in the manuscript reports that count-based methods have well-controlled FDR. Sup-

plementary Figure 6 shows that the likelihood of a false call increases in the presence of outliers,

especially for edgeR. In particular, Supplementary Figure 6, panels (a) and (b) evaluate the oper-

ating characteristics shown in Table 2 within subsets of genes grouped by their Dixon’s Q-statistic

([4]). As detailed in Methods, a gene harboring an outlier will have a Dixon’s Q-statistic near one.

Panel (b) of Supplementary Figure 6 shows that FDR is relatively constant for most methods when

outliers are present, with the exception of edgeR, where FDR increases substantially with increases

in Dixon’s Q-statistic. Panel (c) of Supplementary Figure 6 shows that values of the Dixon’s Q-

statistic considered in Sim III are consistent with those observed in many data sets (the MAQC data

set has fewer outliers given it is comprised of technical, not biological, replicates). Panel (d) provides

an example of the types of genes identified by edgeR having high Dixon’s Q-statistic. Specifically,

shown are the nine genes with highest Dixon’s Q-statistics in those exclusively identified by edgeR.

Although FDR is well-controlled for edgeR overall (detailed in Table 2), these figures suggest that

the majority of false discoveries that are identified by edgeR are likely in genes harboring outliers.

Genes identified exclusively by EBSeq having highest Dixon’s Q-statistic are shown in Supple-

mentary Figure 7.
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Supplementary Figure 5: Panels (a)-(c) show the distribution of µ, φ and Dixon’s Q-statistic, dg,
comparing one simulated data set from Sim III (histogram) with the empirical data from the
experiment comparing ESCs with iPSCs (density, pink line). Panel (d) shows the scatter plot
shown in Figure 1, but from one of the simulated data sets from Sim I.
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Supplementary Figure 6: Panel (a) and (b) show the operating characteristics of baySeq, DESeq,
edgeR and EBSeq on subsets of genes averaged across 100 Sim III data sets for target FDR set
at 5%. The subsets are defined as genes with Dixon’s Q-statistic greater than the value given on
the x-axis. Panel (c) shows the cumulative distribution function (CDF) of Dixon’s Q-statistic in 4
empirical data sets as well as the CDF averaged across 100 simulations. Panel (d) shows 9 genes
identified exclusively by edgeR having highest Dixon’s Q-statistic for one simulated data set. The
blue and red points correspond to two different conditions. The y-axis shows the normalized gene
expression. The legend within each box shows whether the gene is a true positive (TP) or false
discovery (FD) as well as the corresponding Dixon’s Q-statistic value.
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Supplementary Figure 7: Shown are nine genes with highest Dixon’s Q-statistics of those exclusively
identified by EBSeq on one simulation of Sim III (the same one as in Supplementary Figure 6 (d)).
Blue and red points are samples from condition 1 and 2. The y-axis shows the gene expression
counts. The legend within box shows whether the gene is a true positive (TP) or false discovery
(FD) as well as the corresponding Dixon’s Q-statistic.
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(c) φg = 0.95

Supplementary Figure 8: ROC curves averaged over 100 simulations using the simulation set up
shown in Figure 3 of Robinson and Smyth[16] and Figure 2 of Hardcastle et al.[6].

In addition to the simulations detailed in the manuscript, we reproduced the set-up shown in

Figure 3 of Robinson and Smyth[16] and Figure 2 of Hardcastle et al. [6] by fixing φg = 0.17, 0.42

and 0.95, as done in their work. For ten lanes (five in each of two conditions), we simulated data

for 10,000 genes in which 50% were defined to be DE, also as in their work. For each value of φ, ls’s

were sampled from Uniform(0.8, 1.3) and µCg ’s were randomly sampled from the empirical means

in the experiment comparing ESCs with iPSCs.

Supplementary Figures 8(a), 8(b) and 8(c) show the ROC curves for baySeq, DESeq, edgeR,

and EBSeq, averaged over 100 simulations, for each of the three overdispersion parameters. As

shown, baySeq and EBSeq perform consistently across the three overdispersion values.

To further evaluate how outliers affect the operating characteristics of each method, we inves-

tigate 5 simulations with outlier percentages 0%, 2.5%, 5%, 7.5% and 10%. Gene counts were

simulated as in Sim III, but for a gene with an outlier, we modify the expression of one random

sample to match a Dixon’s Q-statistic randomly sampled from the 90th-98th percentile of Dixon

Q-statistics (Dixon’s Q-statistic is defined as in Methods). Supplementary Figure 9 shows average

power and FDR across 100 simulations for each of the five sets.
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Supplementary Figure 9: Shown are Power and FDR averaged across 100 simulations for each of
five sets of simulations, described earlier in this Supplement. Each set contains 0%, 2.5%, 5%, 7.5%
or 10% outliers. Target FDR was set at 5%.
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Supplement Table 1: Applying gene level (count-based) methods on simulated isoform data

baySeq DESeq edgeR EBSeq

All Isoforms
Power 56.9% 72.3% 81.2% 81.4%
FDR 0% 0.5% 13.1% 5.0%

Ig = 1 Isoforms
Power 53.3% 56.8% 60.9% 78.2%
FDR 0% 0% 0% 0.5%

Ig = 2 Isoforms
Power 56.3% 75.2% 84.3% 83.1%
FDR 0% 1.2% 4.6% 5.7%

Ig = 3 Isoforms
Power 59.4% 78.1% 90.3% 81.5%
FDR 0.5% 0.9% 17.3% 7.0%

Power and FDR averaged across 100 isoform simulations. Thresholds were chosen to control
FDR at 5% for each approach. Count-based DE methods are significantly underpowered in the
Ig = 1 group when applied directly to estimates of isoform expression.
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Supplementary Figure 10: Shown are ROC curves for baySeq, DESeq, edgeR and EBSeq averaging
100 Sim III data sets.
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5 Case Study Results
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Supplementary Figure 11: Shown are the top nine genes with highest Dixon’s Q-statistics exclusively
identified by edgeR in the experiment comparing ESCs with iPSCs. Blue and red points are samples
from ES cell lines and iPS cell lines, respectively. The y-axis shows gene expression counts. Dixon’s
Q-statistic and fold change ratio (FCR) are shown in the legends.
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Supplementary Figure 12: Shown are the top 9 genes with highest Dixon’s Q-statistics exclusively
identified by EBSeq in the experiment comparing ESCs with iPSCs. Blue and red points are samples
from ES cell lines and iPS cell lines. The y-axis shows gene expression counts. Dixon’s Q-statistic
and fold change ratio (FCR) are shown in the legends.
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Supplementary Figure 13: The left panel shows 20 genes in the Ig = 2 group identified as EE by
EBSeq (gene level posterior probability of EE > 0.95) with DE isoforms (isoform level posterior
probability of DE > 0.95) in the experiment comparing ESCs with iPSCs. Each bar shows the
isoform expression in each condition; expression of the constituent isoforms is shown in different
colors within each gene. The right panel shows 3 example EE genes with DE isoforms. Each bar
shows the isoform expression in each sample; expression of the constituent isoforms is shown in
different colors within each gene.
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6 Parameter estimation and multiple group analysis

As in the text, we let XC1
gi = Xgi,1, Xgi,2, ..., Xgi,S1 denote data from Condition 1 and XC2

gi =

Xgi,(S1+1), Xgi,(S1+2), ..., Xgi,S data from Condition 2. We assume that counts within condition C

are distributed as Negative Binomial: XC
gi,s|rgi,s, q

C
gi ∼ NB(rgi,s, q

C
gi) where

P (Xgi,s|rgi,s, qCgi) =

(
Xgi,s + rgi,s − 1

Xgi,s

)
(1− qCgi)

Xgi,s(qCgi)
rgi,s (1)

and µCgi,s = rgi,s(1− qCgi)/q
C
gi ; (σCgi,s)

2 = rgi,s(1− qCgi)/(q
C
gi)

2.

We assume a prior distribution on qCgi :qCgi |α, β
Ig ∼ Beta(α, βIg ). The hyper parameter α is

shared by all the isoforms and βIg is Ig specific. We further assume that rgi,s = rgi,0ls. I.e., rgi,0 is

an isoform specific parameter common across conditions. Of interest is distinguishing between EE

and DE (two expression patterns) where EE refers to qC1
gi = qC2

gi and DE refers to qC1
gi 6= qC2

gi .

On the null hypothesis (EE), the data XC1,C2
gi = XC1

gi , X
C2
gi arise from the prior predictive

distribution f
Ig
0 (XC1,C2

gi ):

f
Ig
0 (XC1,C2

gi ) =

[
S∏
s=1

(
Xgi,s + rgi,s − 1

Xgi,s

)]
Beta(α+

∑S
s=1 rgi,s, β

Ig +
∑S
s=1Xgi,s)

Beta(α, βIg )
(2)

Under the alternative (DE), XC1,C2
gi follows the prior predictive distribution f

Ig
1 (XC1,C2

gi ):

f
Ig
1 (XC1,C2

gi ) = f
Ig
0 (XC1

gi )f
Ig
0 (XC2

gi ) (3)

Denoting the latent variable Zgi where Zgi = 1 indicates that isoform gi is DE and Zgi = 0

indicates isoform gi is EE; Zgi ∼ Bernoulli(p). Thus, the marginal distribution of XC1,C2
gi and Zgi

is:

(1− p)f Ig0 (XC1,C2
gi ) + pf

Ig
1 (XC1,C2

gi ) (4)
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The posterior probability of being DE at isoform gi is obtained by Bayes’ rule:

pf
Ig
1 (XC1,C2

gi )

(1− p)f Ig0 (XC1,C2
gi ) + pf

Ig
1 (XC1,C2

gi )
(5)

6.1 Parameter estimation

With the assumption that rgi,s = rgi,0ls, denote µCgi,0 and (σCgi,0)2 as the mean and variance of

gene g isoform i under standard library size. Then µCgi,0 = 1
ls
µCgi,s for any s within condition C,

Assume there are SC samples in condition C. We could obtain the unbiased estimator µ̂Cgi,0 =

1
SC

∑
s in C

1
ls
µ̂Cgi,s where µ̂Cgi,s = XC

gi,s.

Since (σCgi,0)2 = 1
ls

(σCgi,s)
2 for any s within condition C, we could obtain the estimator (σ̂Cgi,0)2 =

1
SC

∑
s in C

1
ls

(σ̂Cgi,s)
2, which is unbiased conditioning on µgi,0 = µ̂gi,0 where (σ̂Cgi,s)

2 = (XC
gi,s −

lsµ̂
C
gi,0)2.

Denote µ̂gi,0 =
µ̂C1
gi,0

+µ̂C2
gi,0

2 and σ̂2
gi,0 =

(σ̂C1
gi,0

)2+(σ̂C2
gi,0

)2

2 Then the estimator of rgi,0 is obtained by

r̂gi,0 =
µ̂2
gi,0

σ̂2
gi,0

−µ̂gi,0
.

l̂s could be obtained by the total number of reads, TMM [15], Median Normalization [1], or

Quantile Normalization [2]. Since the total number of reads may be adversely affected by out-

liers from PCR or other artifacts, the latter 3 methods are more acceptable. We used Median

Normalization.

The EM algorithm is used to estimate α, βIg and p via the optim function in R.

6.2 Multiple Condition Case

EBSeq naturally accommodates multiple condition comparisons. For example, in a study with

3 conditions, there are 5 possible patterns in which latent levels of expression may vary across

conditions: qC1
gi = qC2

gi = qC3
gi ; qC1

gi = qC2
gi 6= qC3

gi ; qC1
gi = qC3

gi 6= qC2
gi ; qC1

gi 6= qC2
gi = qC3

gi ; and

qC1
gi 6= qC2

gi 6= qC3
gi .

The prior predictive distributions for these are given, respectively, by:

g
Ig
1 (XC1,C2,C3

gi ) = f
Ig
0 (XC1,C2,C3

gi ); g
Ig
2 (XC1,C2,C3

gi ) = f
Ig
0 (XC1,C2

gi )f
Ig
0 (XC3

gi ); g
Ig
3 (XC1,C2,C3

gi ) =

f
Ig
0 (XC1,C3

gi )f
Ig
0 (XC2

gi ); g
Ig
4 (XC1,C2,C3

gi ) = f
Ig
0 (XC1

gi )f
Ig
0 (XC2,C3

gi ); and g
Ig
5 (XC1,C2,C3

gi ) = f
Ig
0 (XC1

gi )f
Ig
0 (XC2

gi )f
Ig
0 (XC3

gi )
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in which f
Ig
0 is the same as in equation 2. Then the marginal distribution in equation 4 becomes:

5∑
j=1

pjg
Ig
j (XC1,C2,C3

gi ) (6)

in which
∑5
j=1 pj = 1.

Thus, the posterior probability that isoform gi is in pattern PJ is readily obtained by:

pJg
Ig
J (XC1,C2,C3

gi )∑5
j=1 pjg

Ig
j (XC1,C2,C3

gj )
(7)

Parameter estimation closely follows that given in the previous section. For the 3 condition case

presented here, µ̂gi,0 =
µ̂C1
gi,0

+µ̂C2
gi,0

+µ̂C3
gi,0

3 and σ̂2
gi,0 =

(σ̂C1
gi,0

)2+(σ̂C2
gi,0

)2+(σ̂C3
gi,0

)2

3 .

6.3 EBSeq may also be used to identify equivalently expressed isoforms

and genes

Unlike most approaches which classify non-DE genes as EE, as we detail above, EBSeq is based on

a mixture model which facilitates evaluation of the posterior probabilities associated with DE, as

well as EE. With these posterior probabilities, a user may identify an FDR controlled list of EE

genes. This may be of particular interest for genes with more than one isoform, since compensatory

mechanisms may give rise to DE isoforms in EE genes; and consequently subtle, yet important,

differences may be missed if focus is placed exclusively on DE genes alone. Using the EE posterior

probabilities from the case study, EBSeq identified 64 EE genes with DE isoforms contributing at

least 30% of the gene expression (20 are shown in Supplementary Figure 13).

7 Model Diagnostics

Supplementary Figure 14(a) shows the estimated qC1
gi ’s (qC1

g ’s) and the same number of points

simulated from the prior assumed in EBSeq, namely a Beta distribution with hyperparameters

estimated as described in Section 6 of this Supplement using data from the experiment comparing
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Supplementary Figure 14: Panel (a) shows a QQ-plot comparing the estimated qC1
gi ’s (qC1

g ’s) and the
same number of points simulated from a Beta distribution with parameters estimated via EBSeq.
The data is from the experiment comparing ESCs with iPSCs. Panel (b) shows a histogram of the
estimated qC1

gi ’s (qC1
g ’s) and the corresponding Beta densities.

ESCs with iPSCs. Supplementary Figure 14(b) shows the histogram of estimated qC1
gi ’s (qC1

g ’s) and

the fitted Beta density using that same data. These figures indicate that the prior assumed by

EBSeq is reasonable for the experiments considered here.
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